1. [3 points] Consider the sum of three 4-sided dice. A four-sided die is shaped like a pyramid made of equilateral triangles, and has the numbers $1,2,3,4$ on its sides.
a. Construct the pdf and cdf for the sum of three 4 -sided dice. In 64ths:

	3	4	5	6	7	8	9	10	11	12
Pdf	1	3	6	10	12	12	10	6	3	1
Cdf	1	4	10	20	32	44	54	60	63	64

b. Using the cdf, show the probability of getting a sum in the range 6 to $8:(\mathbf{3 4 / 6 4})$
2. [3 points] Consider the sum of 3 coin flips, where heads is assigned the value 1 and tails is assigned the value 0 .
a. What is the mean of the sum of 3 coin flips? What proportion of the time would you expect to see the sum of 3 coin flips take on its mean value? mean $=\mathbf{1 . 5 , 0 \%}$ of the time

	0	1	2	3
Pdf	1	3	3	1
Cdf	1	4	7	8

b. What is the variance of the sum of 3 coin flips? $\mathbf{V}=\mathbf{0 . 7 5}$
3. [1 point] Which of the following is a linear regression model:
a. $\quad Y_{i}=\alpha+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\varepsilon_{i}$
b. $\quad \log \left(Y_{i}\right)=\beta_{0}+\beta_{1} \log \left(X_{i}\right)+\varepsilon_{i}$
c. $Y_{i}=\beta_{0}+\beta_{1} e^{X_{i}}+\varepsilon_{i}$
d. all of the above
e. none of the above
4. [2 points] Why does s^{2} have $n-1$ in its denominator rather than n ? So that it is an unbiased estimator of V---they should prove this.
5. [6 points] Let 2 random variables have the following joint pdf, with X in rows, and Y in columns:

	$Y=-1$	$Y=0$	$Y=1$
$X=-1$	0.125	0.15	0.125
$X=0$	0	0.2	0
$X=1$	0.125	0.15	0.125

a. What is the conditional mean of Y for each value of X ? $\boldsymbol{E}[\boldsymbol{Y} \mid \boldsymbol{x}]=\boldsymbol{g}(\boldsymbol{x})=\mathbf{0}$
b. What is the covariance of X and Y ? Are X and Y independent? $\operatorname{Cov}(\mathbf{X}, \mathbf{Y})=\mathbf{0}$, not independent (eg, $V(X)$ depends on Y)
c. What is the probability that $X=1 ? \mathbf{0 . 4 0}$
d. Assume the even simpler regression model $Y_{i}=\beta X_{i}+\varepsilon_{i}$. Given a large number of observations from this joint pdf, what would you expect the estimated coefficient to be? 0--they could work this out by weighting the formula for beta-hat, or argue it from the conditional mean not depending on X.
6. [2 points] Prove that the sample mean is an unbiased estimator of the population mean. Be sure to write down all your assumptions. standard proof in my notes, or any other
7. [2 points] Suppose that Z is the average of n iid observations of a random variable X. Suppose that $V(X)=1$. Suppose that n is very large. Construct a standard normally distributed test statistic for the hypothesis that X is drawn from a distribution whose mean is $2 .(Z-2) /\left(1 / n^{1 / 2}\right) \sim N(0,1)$
8. [2 points] Consider the even simpler regression model $Y_{i}=\beta X_{i}+\varepsilon_{i}$, where Y earnings in thousands of dollars and X is age in years. Say that your estimated value of the coefficient is 4 , and that the variance of this estimated coefficient is 4 .
a. What is estimated difference in earnings between a person who is 25 and a person who is 40 ? $\mathbf{\$ 6 0 , 0 0 0}$
b. How would you use the tables in the back of your textbook to test the hypothesis that the slope of earnings with respect to age is zero? find the \mathbf{p}-value for a standard normal equal to $\mathbf{4 / 2 = 2}$. they should state whether it is one- or two-sided.
9. [2 points] Suppose that $X \sim N(0,1), U \sim N(0,1)$ and $Y=2 X+U$.
a. What is the conditional expectation of Y given that $X=2$? 4
b. What is the distribution of $Z=X^{2}+U^{2}$? chi-square with 2 df
10. [2 points] Suppose that $X \sim N(2,2)$ and $Y=2 X+5$.
a. What is the mean of Y ? What is the variance of Y ? $\quad \mathbf{E}[\mathbf{Y}]=\mathbf{9} ; \mathbf{V}[\mathbf{Y}]=\mathbf{8 ;} \mathbf{Y} \sim \mathbf{N}(\mathbf{9}, \mathbf{8})$

What is the distribution of Y ?

